
LLNL-TR-400310

Implementing Graph Pattern
Queries on a Relational
Database

I. L. Kaplan, G. M. Abdulla, S. T. Brugger, S. R.
Kohn

January 8, 2008



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Graph Query Language : Implementing Graph Pattern Queries on a Relational
Database

This page last changed on Jan 11, 2008 by kaplan4.

LLNL technical report LLNL-TR-400310. This work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding
provided by LDRD 06-ERD-009.

Abstract

When a graph database is implemented on top of a relational database, queries in the graph query
language are translated into relational SQL queries. Graph pattern queries are an important feature of a
graph query language. Translating graph pattern queries into single SQL statements results in very poor
query performance. By taking into account the pattern query structure and generating multiple SQL
statements, pattern query performance can be dramatically improved. The performance problems
encountered with the single SQL statements generated for pattern queries reflects a problem in the SQL
query planner and optimizer. Addressing this problem would allow relational databases to better support
semantic graph databases. Relational database systems that provide good support for graph databases
may also be more flexible platforms for data warehouses.

Introduction

A semantic graph database is a database made up of typed graph vertices and typed edges that
connected these vertices. For example, a graph database could include vertices with the type person or
organization. An example of a person vertex might be {name=Thomas J. Watson, birthdate =
1914-01-14 }. This instance of a person vertex in the graph could be connected by an EmployedBy edge
to the organization vertex International Business Machines and a BornIn edge to the city Dayton,

Ohio. As this example demonstrates, a vertex in the graph database may have multiple attributes (e.g.,
name and birth date). Edges may, optionally, have attribute values as well.

A graph query language is a query language designed for a graph database. When a graph database is
implemented on top of a relational database, queries in the graph query language are translated into
relational SQL queries [1]. Some graph query operations can be efficiently implemented by translating
the graph query into a single SQL statement. Examples include adjacency and graph filter queries. The
adjacency function adds a set of selected adjacent links and vertices to a selected subgraph. The graph
filter function filters a graph to return a subgraph consisting of only selected vertices or links. Graph
pattern queries are an important feature of a graph query language. In contrast to the adjacency and
graph filter functions, translating pattern queries into single SQL statements can result in very poor query
performance.

In this report, the performance of single SQL statement pattern queries is contrasted with an approach
that generates SQL for depth first paths through the pattern query. The performance of this latter
approach can result in dramatically faster graph pattern query execution. Pattern queries that are
translated into SQL for depth first paths will also perform better as the graph size increases.

Generating SQL for paths through the pattern query requires more complex software support in the graph

Document generated by Confluence on Jan 14, 2008 10:34 Page 1



query engine. This extra complexity could be avoided if the relational SQL optimizer and query planner
generated an efficient query plan for single SQL statements generated for pattern queries. The fact that
this is not the case represents a failure of the SQL query optimizer, relative to graph pattern queries.

Graph Databases and Graph Queries

In some application areas, graph databases offer important advantages over relational databases:

1. Data from a wide variety of sources can be easily fused into a single semantic graph.
2. The structure of the graph is controlled by the semantic graph ontology. The graph structure can be

changed by modifying the ontology. Within limits, software can migrate graph data from one graph
ontology to another.

3. Graph queries provide a simple way to express graph database queries would be difficult to express
in relational SQL.

Many graph pattern matching algorithms [6] are implemented as in memory algorithms. In most cases
these algorithms can only be applied to data sets that will fit in computer memory. A semantic graph
database can store data from myriad sources, resulting in very large graphs that cannot fit into computer
memory. The pattern matching algorithms that are applied to out-of-memory graphs stored on persistent
media like computer disk systems are data parallel algorithms. In this report these algorithms are
implemented in relational SQL.

A graph database could be supported by custom database software. A graph query would be directly
translated into a query plan for this custom database. Such a database would require significant
development effort and might have to be modified for different hardware configurations. Translating
graph queries into standard SQL for a relational database allows the graph database to be hosted on a
variety of relational database systems, ranging from database servers to distributed relational databases.

The graph query language discussed here [5] supports the following graph functions:

• graph union, intersection and difference
• filter - filter a graph so that the query result contains only the vertices and edges defined in the

query.
• adjacency - expand a defined subgraph by adding selected links and vertices.
• Path traversal between a set of source and destination points in the graph.
• Pattern queries.

The graph query language supports nested queries, where one query expression defines the input graph
for another query expression.

The graph query language described here has been influenced by the work of David Jensen's group at the
University of Massachusetts at Amherst on the QGraph graph query language [2, 3] and by the work that
David Silberberg's group has done at the Johns Hopkins Advanced Physics Laboratory [4].

The binary graph operations (union, intersection and difference), filter and adjacency are implemented by
translating the graph query into a single SQL statement. This approach is attractive because of its
simplicity. A similar approach can be used for graph pattern queries. The SQL for a pattern query could
also be constructed by traversing the data structure for the pattern query. As the results presented in this
report show, when a single SQL statement is generated for a graph pattern query, the query performance

Document generated by Confluence on Jan 14, 2008 10:34 Page 2



can be very poor.

Graph Database Ontologies

A graph database is created when a graph ontology is loaded into the semantic graph database system.
The graph ontology defines the graph vertex types and the types of the edges that connect these
vertices. The ontology also defines the attributes for each vertex (or edge). Multiple ontologies can be
supported at the same time and there may be multiple graphs associated with each ontology.

The graph database schema that supports the graph ontologies is diagrammed in Figure 1, below. Each
ontology has an associated set of tables that store the vertex attributes. In Figure 1 the table es_42

stores attribute information for instances of author vertices and the table es_43 stores the attributes for
instances of article vertices. The cloud represents the ontology information which includes mappings
between the names in the query (author or article) and database tables (es_42 or es_43). Graph vertex
attributes are shared by all graphs that are associated with a particular ontology. There is a unique edge
table for each graph. The edge table columns are also diagrammed in Figure 1. Each graph also has an
associated vertex table that contains all of the vertex identifiers and types for the graph. This table is not
used by pattern query operations.

Figure 1

The SQL generated for the pattern queries discussed in this report largely consist of self-joins against the
edge table. The edge table has three sets of indices, as shown in Figure 2, below. The primary key is on
the {link_id, link_type} columns. There are also indices on the {src_node_id, src_node_type} and the
{dst_node_id, dst_node_type} columns.

Document generated by Confluence on Jan 14, 2008 10:34 Page 3



Figure 2

Pattern Queries

"I don't know what you mean by 'pattern query'," Alice said.

Humpty Dumpty smiled contemptuously. "Of course you don't – till I tell you. When I say find all of the
authors who have published two articles, I mean return a set of subgraphs that pair each author with
combinations of two of the articles they have published. It's a combinatoric choose(N,k) problem you
see."

"But a pattern query doesn't mean 'choose(N, k)', it just means find that pattern in the graph" Alice
objected.

"When I use a word," Humpty Dumpty said in a rather a scornful tone, "it means just what I choose it to
mean – neither more nor less.

"The question is," said Alice, "whether you can make words mean different things."

With apologies to Lewis Carroll and his book Through the Looking-Glass (Macmillan, 1871)

Pattern queries seem intuitive. For example, the pattern query find all of the authors who have published
two articles seems intuitively obvious. But what does this query really mean? Does it mean find all of the
authors who have published exactly two articles? Or does it mean find all of the authors who have
published two or more articles? If we use the latter meaning, what subgraphs should the query return?

The pattern query find all of the authors who have published two articles is constrained only by the types
of the vertices (or the edges if we defined the edge relationship in the pattern query). As Humpty Dumpty
states in the quote above, computational complexity of the pattern query find all authors who have
published two articles is choose(N, 2), where N is the number of articles published by a particular author.
This is shown in Figure 3, below. The author Peter Watts has four publications: Starfish, Maelstrom,
Behemoth and Blindsight.

Document generated by Confluence on Jan 14, 2008 10:34 Page 4



Figure 3

The number of unique patterns in this case is (3 * 4)/2 = 6. The number of subgraphs that are returned
by choose(N, k) pattern queries can be calculated using the equation below:

choose(N, k) =

Why Allow Combinatoric Pattern Queries?

The behavior of pattern queries that are constrained only by the vertex type may be unexpected. The
person posing the query may not expect to get back a set of subgraphs consisting of the combinatoric set
of choose(N, k) matching subgraphs. Why allow queries that return a large unexpected result?

In some cases combinatoric pattern matching is the only technique that will find a matching pattern in
the graph. In Figure 4, below, the pattern query (shown with rectangles) matches only one pattern in
the data (shown with ovals). This pattern can only be discovered by trying the different combinations to
fill in the matching subgraph.

Document generated by Confluence on Jan 14, 2008 10:34 Page 5



Figure 4

Combinatoric matches are only a problem when there are instances of high degree vertices for one of the
types in the pattern. If the pattern consists of types with only a relatively small number of instances the
combinatoric match may not be a problem.

Queries with Constraints

By adding constraints to a pattern query, the number of subgraphs returned can be reduced. There are
two kinds of constraints:

1. a where clause that defines a constraint on the vertex attributes
2. a cardinality constraint that defines an exact number of edges.

These constraints can be mixed in a single pattern query.

An example of a query with where clause constraints is shown below in Figure 5.

Document generated by Confluence on Jan 14, 2008 10:34 Page 6



Figure 5

The pattern query in Figure 6 includes a cardinality constraint. This query finds all of the authors who
have published exactly two articles.

Figure 6

A cardinality constraint may also specify a range. Figure 7 shows a query that will return subgraphs for
authors who have published exactly two, three or four articles.

Figure 7

A cardinality constraint may have an open upper bound. The query in Figure 8 will return subgraphs for
authors have have published 2 to N articles, where N is the maximum number of articles published by
any author.

Document generated by Confluence on Jan 14, 2008 10:34 Page 7



Figure 8

Pattern Query to SQL Translation

A graph pattern query is a connected graph. Execution of a pattern query is the process of finding
subgraphs that exactly match the graph defined in the pattern query.

A graph pattern query is stored as a data structure in computer memory. The query is translated into
SQL by traversing this data structure and building one or more SQL statements which are sent to the
relational database to produce the pattern query result. The simplest way to translate pattern queries
into SQL is to generate a single SQL statement, with an edge table join for each edge in the graph.
Unfortunately on the database we used for the benchmarks in this report, the performance of these
queries is poor. By traversing unique non-overlapping paths through the pattern query and generating
SQL for each path, much faster pattern query execution can be achieved.

Avoiding Geometric Pattern Duplicates

Figure 9

There is no inherent ordering of vertices in a graph. Figure 10 shows two possible orderings for one
subgraph returned by the pattern query in Figure 9 (an author linked to two articles).

Document generated by Confluence on Jan 14, 2008 10:34 Page 8



Figure 10

Patterns that differ only in their geometric arrangement are of no interest in graph pattern matching
applications and greatly increase the size of the query result. To avoid returning these geometric
duplicates the SQL that is generated for a pattern query forces an ordering to eliminate duplicate
patterns. An example is shown below in the SQL that would be generated for the author to two articles
query.

create table query_1000K as
SELECT l1.link_id link_1_id, l1.link_type link_1_type, l2.link_id link_2_id,

l2.link_type link_2_type
FROM e_pubmed_1000k l1, e_pubmed_1000k l2
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.dst_node_id > l2.dst_node_id;

The source and destination node (or vertex) ID is an integer or a cryptographic hash value that is globally
unique for an ontology (e.g., no other node in a graph associated with that ontology has that ID value).
The greater than constraint on the destination of the two author to article edges forces an ordering for
the article vertices in the matching subgraphs. This eliminates geometric duplicates.

The Pattern Query Result Table

The result of a pattern query is the unique set of subgraphs that match the graph pattern. The SQL for
pattern queries in this report return a result where each matching subgraph is a row in the result table.
Each column of the row is a link in the matching subgraph. This presents a problem since pattern query
result tables may have differing numbers of result table columns. The query engine will execute
additional queries that write the query result into a query result table that has the same column structure
for all pattern queries. These queries are outside of the scope of this report.

The Relational Database and Test Graph Size

All of the benchmarks discussed in this report have been run on a relational database that is hosted on a
four processor database server. The graph used for benchmark testing consists of 1,002,970 vertices
(i.e., about 1 million vertices) and 1,929,797 edges (i.e., about 2 million edges). The important metric
here is the number of edges (e.g., the edge table size). The graph data used for these benchmarks is
taken from the PubMed data set, which consists of journal article publication information. This graph is

Document generated by Confluence on Jan 14, 2008 10:34 Page 9



considerably smaller than the graphs that would be seen in actual semantic graph applications.

Pattern Queries with Cardinality Constraints

The pattern query in Figure 11 includes a cardinality constraint. This pattern query will find all of the
authors who have published exactly two articles.

Figure 11

The SQL for a pattern query with a cardinality constraint requires nested SQL that finds the author
vertices for the authors who have published exactly two articles. This nested SQL is shown below:

SELECT DEGREE.src_node_id
FROM (SELECT DISTINCT links.src_node_id, COUNT (*) cnt

FROM e_pubmed_1000k links
WHERE links.src_node_type = 190 /* author */

AND links.dst_node_type = 186 /* article */
GROUP BY links.src_node_id) DEGREE

WHERE DEGREE.cnt = 2;

This SQL query returns only the author vertices, not the complete pattern. In order to return the
complete pattern, this query is included as a subquery in a larger SQL query. This is shown below:

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type
FROM e_pubmed_1000k l1, e_pubmed_1000k l2,

(SELECT DEGREE.src_node_id
FROM (SELECT DISTINCT links.src_node_id, COUNT (links.src_node_id) cnt

FROM e_pubmed_1000k links
WHERE links.src_node_type = 190 /* author */

AND links.dst_node_type = 186 /* article */
GROUP BY links.src_node_id) DEGREE

WHERE DEGREE.cnt = 2) src
WHERE l1.src_node_id = src.src_node_id

AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.dst_node_id > l2.dst_node_id;

The above SQL statement, with the nested query to find author vertex cardinality caused problems for
the query optimizer and query planner, resulting in poor query performance on the database we used for
our tests. The performance of this query on the test graph is shown below:

time (seconds) rows

8640 (2.4 hours) 66497

The fact that this query has such poor performance seems to be an aberration of the database we used
for testing (perhaps a bug). Another relational database we used for testing executed this query in about

Document generated by Confluence on Jan 14, 2008 10:34 Page 10



the same time as the query broken into two steps, discussed below.

To avoid this problem, this query was broken up into two steps:

1. Build a table of author vertices that are linked to two articles.
2. Return the author to article pattern that contains these articles.

CREATE TABLE degree AS
SELECT DEGREE.src_node_id

FROM (SELECT DISTINCT links.src_node_id, COUNT (links.src_node_id) cnt
FROM e_pubmed_1000k links
WHERE links.src_node_type = 190 /* author */

AND links.dst_node_type = 186 /* article */
GROUP BY links.src_node_id) DEGREE

WHERE DEGREE.cnt = 2;

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type
FROM e_pubmed_1000k l1, e_pubmed_1000k l2, degree
WHERE l1.src_node_id = degree.src_node_id

AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.dst_node_id > l2.dst_node_id;

time (seconds) rows

Step 1 5.2 66497

Step 2 2.8 66497

Total time 8.0

Optimizing Graph Pattern Query Execution

One of the simplest ways to implement graph pattern queries on top of a relational database is to
translate a pattern query into a single SQL statement. The pattern query translation software traverses
the pattern query data structure and builds an SQL statement for the pattern query. As the benchmarks
below demonstrate, these SQL queries consist of multiple self-joins against the graph edge table.

Unfortunately the SQL optimizer and query planner does not execute these SQL statements efficiently. As
the benchmarks below demonstrate, the poor execution performance for these SQL statements is not a
result of the SQL statement complexity, as might be the case if there were multiple levels of query
nesting. The problem seems to arise from the nature of graph pattern queries. Different edge table join
orderings can produce intermediate query results that differ by orders of magnitude in size. Figure 12,
below, shows a breath first and a depth first join ordering. Each color in the diagram is intended to
represent a set of edge table joins. If the breath first ordering is used there would be a very large query
intermediate. If a depth first join ordering is used, the query intermediate is orders of magnitude smaller
resulting in dramatically faster query execution times.

Document generated by Confluence on Jan 14, 2008 10:34 Page 11



Figure 12

The benchmarks in this report compare pattern queries implemented by single SQL statements with
patterns implemented by SQL generated for depth first paths through the pattern query. As these
benchmarks demonstrate, multiple SQL statements that take the pattern structure into account yield
much better pattern query performance than single SQL statements.

query number of subgraphs
(rows)

single SQL statement
(seconds)

paths through the
pattern (seconds)

Where constraint 1 8640 (2.4 hours) ~3.0

Query 1 39036649 54000 (15 hours) 1014 (~17 minutes)

Query 2 957272 16 hours (did not
complete)

21.8

Query 3 19067116 3480.0 (58 minutes) 387 (6.45 minutes)

Query 4 7630 6840.0 (1.9 hours) 282.0 (4.7 minutes)

Discussion

Translating graph pattern queries into relational SQL that has acceptable performance can be a difficult
problem. The benchmarks results described in this report were obtained for a small graph of only 1
million vertices and 2 million edges. The graphs used in real semantic graph applications would be much
larger. These larger graphs may require more powerful databases systems than the database server used
in these benchmarks. But hardware alone will not deliver pattern query performance. Pattern query

Document generated by Confluence on Jan 14, 2008 10:34 Page 12



execution must minimize the size of query intermediate results. The SQL optimizer cannot be relied on to
efficiently execute single SQL statements that implement pattern queries. The results in this report show
that acceptable pattern query execution performance requires SQL generation that optimizes for the
pattern query structure.

The extra complexity entailed in translating graph pattern queries into multiple SQL statements is
required because the relational database query planner and optimizer does very poorly with the single
SQL statements generated for pattern queries. Graph pattern query translation must take into account
the structure of the pattern query and generate multiple SQL statements to efficiently implement the
pattern query. This complexity could be avoided if the relational database query optimizer were extended
to handle pattern queries efficiently. One approach that the SQL optimizer might take is to rebuild the
pattern query from the set of joins defined in a single SQL statement for the pattern. Once the pattern is
reconstructed, the query optimizer could use a query plan that ordered joins using depth first paths
through the pattern, as described in this report.

Graph databases and graph query languages allow queries to be easily formulated that are difficult to
express in relational SQL. These queries are commonly used in applications involving crime or intelligence
investigation. These are specialized areas and it could be argued that the effort to extend the query
optimizer for graph pattern queries would not benefit a majority of the database user community.
However, the problems encountered for pattern queries may also exist for data warehouse applications.
The database schema chosen for many data warehouses may be overly constrained to avoid the kinds of
performance problems discussed in this report. The result is a data warehouse that is tuned for certain
queries but performs very badly for others. An SQL optimizer that could deliver acceptable performance
for pattern queries might allow more general data warehouse schemas. The result would be a more
flexible data warehouse implementation.

Pattern Query Benchmark Results

A Pattern Query with a Where Clause Constraint

This is a highly constrained pattern query. There is only one instance of this sub-graph in the test graph.
The simplest way to generate SQL for this query is to traverse the data structure for the pattern query

Document generated by Confluence on Jan 14, 2008 10:34 Page 13



and generate a single SQL statement. The SQL statement that might be generated is shown below. The
es_194 table is the vertex table that contains the attribute values for the JournalIssue vertices.

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type,
l3.link_id link_3_id, l3.link_type link_3_type,
l4.link_id link_4_id, l4.link_type link_4_type,
l5.link_id link_5_id, l5.link_type link_5_type,
l6.link_id link_6_id, l6.link_type link_6_type,
l7.link_id link_7_id, l7.link_type link_7_type,
l8.link_id link_8_id, l8.link_type link_8_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3, e_pubmed_1000k l4,
e_pubmed_1000k l5, e_pubmed_1000k l6, e_pubmed_1000k l7, e_pubmed_1000k l8,

es_194 ji1, es_194 ji2, es_194 ji3, es_194 ji4
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l3.dst_node_type = 186 /* article */
AND l4.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.src_node_id = l3.src_node_id
AND l1.src_node_id = l4.src_node_id
AND l1.dst_node_id > l2.dst_node_id
AND l2.dst_node_id > l3.dst_node_id
AND l3.dst_node_id > l4.dst_node_id
AND l5.src_node_id = l1.dst_node_id
AND l5.dst_node_type = 194 /* JournalIssue */
AND l6.src_node_id = l2.dst_node_id
AND l6.dst_node_type = 194 /* JournalIssue */
AND l7.src_node_id = l3.dst_node_id
AND l7.dst_node_type = 194 /* JournalIssue */
AND l8.src_node_id = l4.dst_node_id
AND l8.dst_node_type = 194 /* JournalIssue */
AND ji1.c_pubdate = to_date('4/22/2005', 'MM/DD/YYYY')
AND l5.dst_node_id = ji1.guid
AND ji2.c_pubdate = to_date('4/15/2005', 'MM/DD/YYYY')
AND l6.dst_node_id = ji2.guid
AND ji3.c_pubdate = to_date('5/6/2005', 'MM/DD/YYYY')
AND l7.dst_node_id = ji3.guid
AND ji4.c_pubdate = to_date('3/25/2005', 'MM/DD/YYYY')
AND l8.dst_node_id = ji4.guid;

time (seconds) rows

8640 (2.4 hours) 1

This query takes 2.4 hours on a million vertex test graph. Graphs that would be used in real analytic
problems would be orders of magnitude larger, resulting in even longer query times.

This query can also be efficiently implemented by dividing it into four paths through the pattern query,
one path for each leaf condition in the pattern query tree. Each of the paths is then joined in a final step.
This approach requires five SQL queries: one for each of the four paths, plus the final join.

Document generated by Confluence on Jan 14, 2008 10:34 Page 14



CREATE TABLE path_4_22 AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, es_194 ji
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */
AND ji.c_pubdate = to_date('4/22/2005', 'MM/DD/YYYY')
AND l2.dst_node_id = ji.guid
;

CREATE TABLE path_4_15 AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, es_194 ji
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */
AND ji.c_pubdate = to_date('4/15/2005', 'MM/DD/YYYY')
AND l2.dst_node_id = ji.guid
;

CREATE TABLE path_5_6 AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, es_194 ji
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */

Document generated by Confluence on Jan 14, 2008 10:34 Page 15



AND ji.c_pubdate = to_date('5/6/2005', 'MM/DD/YYYY')
AND l2.dst_node_id = ji.guid
;

CREATE TABLE path_3_25 AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, es_194 ji
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */
AND ji.c_pubdate = to_date('3/25/2005', 'MM/DD/YYYY')
AND l2.dst_node_id = ji.guid
;

CREATE TABLE query_result AS
SELECT p1.e1_link_id link_1_id, p1.e1_link_type link_1_type, p1.e2_link_id, link_5_id
p1.e2_link_type link_5_type,

p2.e1_link_id link_2_id, p2.e1_link_type link_2_type, p2.e2_link_id, link_6_id
p2.e2_link_type link_6_type,

p3.e1_link_id link_3_id, p3.e1_link_type link_3_type, p3.e2_link_id, link_7_id
p3.e2_link_type link_7_type,

p4.e1_link_id link_4_id, p4.e1_link_type link_4_type, p4.e2_link_id, link_8_id
p4.e2_link_type link_8_type
FROM path_4_22 p1, path_4_15 p2, path_5_6 p3, path_3_25 p4
WHERE p1.e1_src_node_id = p2.e1_src_node_id /* make sure that the author vertices are the same
*/

AND p2.e1_src_node_id = p3.e1_src_node_id
AND p3.e1_src_node_id = p4.e1_src_node_id
AND p1.e1_dst_node_id > p2.e1_dst_node_id /* order the article vertices */
AND p2.e1_dst_node_id > p3.e1_dst_node_id
AND p3.e1_dst_node_id > p4.e1_dst_node_id
;

time (seconds) rows

path_4_22 0.344 1559

path_4_15 1.0 1388

path_5_6 0.828 1660

path_3_25 0.467 493

join the paths 0.280 1

total ~3.0

Pattern Queries Constrained by Vertex Type

As discussed above, pattern queries that are constrained only by the types of the pattern vertices do
combinatoric pattern matching. In this section we give a few examples of the how these queries can be
translated into single SQL statements. The performance of these single SQL statements is very poor. By
generating SQL for paths through the pattern and then joining these paths, query performance can be
dramatically improved.

Query 1

Document generated by Confluence on Jan 14, 2008 10:34 Page 16



Find subgraphs that consist of an author that has published two articles in the same journal.

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type,
l3.link_id link_3_id, l3.link_type link_3_type,
l4.link_id link_4_id, l4.link_type link_4_type,
l5.link_id link_5_id, l5.link_type link_5_type,
l6.link_id link_6_id, l6.link_type link_6_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3,
e_pubmed_1000k l4, e_pubmed_1000k l5, e_pubmed_1000k l6

WHERE l1.src_node_type = 190 /* author */
AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.dst_node_id > l2.dst_node_id
AND l3.dst_node_type = 194 /* JournalIssue */
AND l3.src_node_id = l1.dst_node_id
AND l4.dst_node_type = 194 /* JournalIssue */
AND l4.src_node_id = l2.dst_node_id
AND l5.dst_node_type = 191 /* Journal */
AND l5.src_node_id = l3.dst_node_id
AND l6.src_node_id = l4.dst_node_id
AND l5.dst_node_id = l6.dst_node_id;

time (seconds) rows

54000 (15 hours) 39036649

The subgraphs that match Query 1 can be found much more rapidly using two sub-queries. The first
query finds a linear path through the pattern (author --> article --> JournalIssue --> journal). The
second query performs a self-join on the result of this query. This self-join finds the paths that share a
common author and journal, but have different articles. The join also orders the article vertices so that
the resulting subgraphs are unique.

Document generated by Confluence on Jan 14, 2008 10:34 Page 17



CREATE TABLE query_half AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type,
l3.src_node_id e3_src_node_id, l3.src_node_type e3_src_node_type,
l3.link_id e3_link_id, l3.link_type e3_link_type,
l3.dst_node_id e3_dst_node_id, l3.dst_node_type e3_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */
AND l3.src_node_id = l2.dst_node_id
AND l3.dst_node_type = 191 /* Journal */
;

CREATE TABLE query_1000k AS
SELECT h1.e1_link_id, h1.e1_link_type,

h1.e2_link_id e3_link_id, h1.e2_link_type e3_link_type,
h1.e3_link_id e5_link_id, h1.e3_link_type e5_link_type,
h2.e1_link_id e2_link_id, h2.e1_link_type e2_link_type,
h2.e2_link_id e4_link_id, h2.e2_link_type e4_link_type,
h2.e3_link_id e6_link_id, h2.e3_link_type e6_link_type

FROM query_half h1, query_half h2
WHERE h1.e1_src_node_id = h2.e1_src_node_id

AND h1.e3_dst_node_id = h2.e3_dst_node_id
AND h1.e1_dst_node_id > h2.e1_dst_node_id
;

time (seconds) rows

find author to journal path 114.0 13696874

join path result 900 (15 minutes) 39036649

total 1014 (~17 minutes)

Query 2

Find subgraphs that consist of an author who has published four articles in the journal Physical Review
Letters.

A single SQL query that implements this pattern query is shown below:

Document generated by Confluence on Jan 14, 2008 10:34 Page 18



CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type,
l3.link_id link_3_id, l3.link_type link_3_type,
l4.link_id link_4_id, l4.link_type link_4_type,
l5.link_id link_5_id, l5.link_type link_5_type,
l6.link_id link_6_id, l6.link_type link_6_type,
l7.link_id link_7_id, l7.link_type link_7_type,
l8.link_id link_8_id, l8.link_type link_8_type,
l9.link_id link_9_id, l9.link_type link_9_type,
l10.link_id link_10_id, l10.link_type link_10_type,
l11.link_id link_11_id, l11.link_type link_11_type,
l12.link_id link_12_id, l12.link_type link_12_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3, e_pubmed_1000k l4,
e_pubmed_1000k l5, e_pubmed_1000k l6, e_pubmed_1000k l7, e_pubmed_1000k l8,
e_pubmed_1000k l9, e_pubmed_1000k l10, e_pubmed_1000k l11, e_pubmed_1000k l12,
es_191 journal

WHERE l1.src_node_type = 190 /* author */
AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l3.dst_node_type = 186 /* article */
AND l4.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id
AND l1.src_node_id = l3.src_node_id
AND l1.src_node_id = l4.src_node_id
AND l1.dst_node_id > l2.dst_node_id
AND l2.dst_node_id > l3.dst_node_id
AND l3.dst_node_id > l4.dst_node_id
AND l5.src_node_id = l1.dst_node_id
AND l5.dst_node_type = 194 /* JournalIssue */
AND l6.src_node_id = l2.dst_node_id
AND l6.dst_node_type = 194 /* JournalIssue */
AND l7.src_node_id = l3.dst_node_id
AND l7.dst_node_type = 194 /* JournalIssue */
AND l8.src_node_id = l4.dst_node_id
AND l8.dst_node_type = 194 /* JournalIssue */
AND l9.src_node_id = l5.dst_node_id
AND l9.dst_node_type = 191 /* journal */
AND journal.c_title = 'Physical review letters'
AND l9.dst_node_id = journal.guid
AND l10.src_node_id = l6.dst_node_id
AND l10.dst_node_id = l9.dst_node_id
AND l11.src_node_id = l7.dst_node_id
AND l11.dst_node_id = l9.dst_node_id
AND l12.src_node_id = l8.dst_node_id
AND l12.dst_node_id = l9.dst_node_id;

time (hours) rows

16 hours did not complete

If the intermediate joins used by the query planner execute the edge table self joins in a breath first
order there can be large intermediate results. A depth first query strategy, where SQL is generated for
paths through the pattern yields dramatically better query performance. This is shown below where the
first query calculates a path through the pattern and the second query joins the paths.

Document generated by Confluence on Jan 14, 2008 10:34 Page 19



CREATE TABLE query_half AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type,

l1.link_id e1_link_id, l1.link_type e1_link_type,
l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,
l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type,
l2.link_id e2_link_id, l2.link_type e2_link_type,
l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type,
l3.src_node_id e3_src_node_id, l3.src_node_type e3_src_node_type,
l3.link_id e3_link_id, l3.link_type e3_link_type,
l3.dst_node_id e3_dst_node_id, l3.dst_node_type e3_dst_node_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3,
(select guid from es_191 where c_title = 'Physical review letters') journal

WHERE l1.src_node_type = 190 /* author */
AND l1.dst_node_type = 186 /* article */
AND l2.src_node_id = l1.dst_node_id
AND l2.dst_node_type = 194 /* JournalIssue */
AND l3.src_node_id = l2.dst_node_id
AND l3.dst_node_type = 191 /* Journal */
AND l3.dst_node_id = journal.guid
;

CREATE TABLE query_1000k AS
SELECT h1.e1_link_id, h1.e1_link_type,

h1.e2_link_id e5_link_id, h1.e2_link_type e5_link_type,
h1.e3_link_id e9_link_id, h1.e3_link_type e9_link_type,
h2.e1_link_id e2_link_id, h2.e1_link_type e2_link_type,
h2.e2_link_id e6_link_id, h2.e2_link_type e6_link_type,
h2.e3_link_id e10_link_id, h2.e3_link_type e10_link_type,
h3.e1_link_id e3_link_id, h3.e1_link_type e3_link_type,
h3.e2_link_id e7_link_id, h3.e2_link_type e7_link_type,
h3.e3_link_id e11_link_id, h3.e3_link_type e11_link_type,
h4.e1_link_id e4_link_id, h4.e1_link_type e4_link_type,
h4.e2_link_id e8_link_id, h4.e2_link_type e8_link_type,
h4.e3_link_id e12_link_id, h4.e3_link_type e12_link_type

FROM query_half h1, query_half h2, query_half h3, query_half h4
WHERE h1.e1_src_node_id = h2.e1_src_node_id /* the source vertices at the start of the
pattern are the same */

AND h2.e1_src_node_id = h3.e1_src_node_id
AND h3.e1_src_node_id = h4.e1_src_node_id
AND h1.e3_dst_node_id = h2.e3_dst_node_id /* the dest. vertices at the end of the pattern

are the same */
AND h2.e3_dst_node_id = h3.e3_dst_node_id
AND h3.e3_dst_node_id = h4.e3_dst_node_id
AND h1.e1_dst_node_id > h2.e1_dst_node_id /* order the article vertices */

Document generated by Confluence on Jan 14, 2008 10:34 Page 20



AND h2.e1_dst_node_id > h3.e1_dst_node_id
AND h3.e1_dst_node_id > h4.e1_dst_node_id
;

time (seconds) rows

path query 1.8 27418

part 2 20.0 957272

total 21.8

Query 3

Find the subgraphs that consist of two authors who have co-authored two papers.

A single SQL statement that implements this query is shown below:

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type,
l3.link_id link_3_id, l3.link_type link_3_type,
l4.link_id link_4_id, l4.link_type link_4_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3, e_pubmed_1000k l4
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id /* l1.src and l2.src are the same vertex */
AND l1.dst_node_id > l2.dst_node_id /* l1.dst and l2.dst are different vertices */
AND l3.src_node_type = 190 /* author */
AND l3.dst_node_id = l1.dst_node_id /* l3.dst is the same vertex as l1.dst */
AND l4.dst_node_id = l2.dst_node_id /* l4.dst is the same vertex as l2.dst */
AND l3.src_node_id = l4.src_node_id /* l3.src and l4.src are the same vertex */
AND l1.src_node_id > l3.src_node_id;

time (seconds) rows

3480.0 (58 minutes) 19067116

This query can be calculated more efficiently by breaking it into two sub-queries and then joining the
result, as shown in the diagram below.

Document generated by Confluence on Jan 14, 2008 10:34 Page 21



CREATE TABLE query_half AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type, l1.link_id e1_link_id,
l1.link_type e1_link_type, l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,

l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type, l2.link_id e2_link_id,
l2.link_type e2_link_type, l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type
FROM e_pubmed_1000k l1, e_pubmed_1000k l2
WHERE l1.src_node_type = 190 /* author */

AND l1.dst_node_type = 186 /* article */
AND l2.src_node_type = 190 /* author */
AND l1.dst_node_id = l2.dst_node_id
AND l1.src_node_id > l2.src_node_id;

CREATE TABLE query_result AS
SELECT h1.e1_link_id e1_link_id, h1.e1_link_type e1_link_type, h1.e2_link_id e3_link_id,
h1.e2_link_type e3_link_type,

h2.e1_link_id e2_link_id, h2.e1_link_type e2_link_type, h2.e2_link_id e4_link_id,
h2.e2_link_type e4_link_type
FROM query_half h1, query_half h2
WHERE h1.e1_src_node_id = h2.e1_src_node_id

AND h1.e2_src_node_id = h2.e2_src_node_id
AND h1.e1_src_node_id > h2.e2_src_node_id
AND h1.e1_dst_node_id > h2.e1_dst_node_id
;

time (seconds) rows

part 1 51.0 7297174

part 2 336.0 19067116

total 387 (6.45 minutes)

Query 4

In knowledge discovery applications it can be important to be able to specify a query where an edge is
excluded from the pattern. The query below specifies a pattern that contains an article that has an

Document generated by Confluence on Jan 14, 2008 10:34 Page 22



associated grant and an article that does not have an associated grant. A single SQL statement for this
query is shown below.

CREATE TABLE query_1000k AS
SELECT l1.link_id link_1_id, l1.link_type link_1_type,

l2.link_id link_2_id, l2.link_type link_2_type,
l3.link_id link_3_id, l3.link_type link_3_type,
l4.link_id link_4_id, l4.link_type link_4_type,
l5.link_id link_5_id, l5.link_type link_5_type

FROM e_pubmed_1000k l1, e_pubmed_1000k l2, e_pubmed_1000k l3,
e_pubmed_1000k l4, e_pubmed_1000k l5

WHERE l1.link_type = 313 /* IsAuthorOf */
AND l1.src_node_type = 190 /* author */
AND l1.dst_node_type = 186 /* article */
AND l2.link_type = 313 /* IsAuthorOf */
AND l2.dst_node_type = 186 /* article */
AND l1.src_node_id = l2.src_node_id /* l1.src and l2.src are the same vertex */
AND l1.dst_node_id > l2.dst_node_id /* l1.dst and l2.dst are different vertices */
AND l5.link_type = 312 /* FundedByGrant */
AND l5.src_node_id = l1.dst_node_id
AND l5.dst_node_type = 185 /* Grant */
AND l3.link_type = 313 /* IsAuthorOf */
AND l3.src_node_type = 190 /* author */
AND l3.dst_node_id = l1.dst_node_id /* l3.dst is the same vertex as l1.dst */
AND l4.link_type = 313 /* IsAuthorOf */
AND l4.dst_node_id = l2.dst_node_id /* l4.dst is the same vertex as l2.dst */
AND l3.src_node_id = l4.src_node_id /* l3.src and l4.src are the same vertex */
AND l1.src_node_id > l3.src_node_id
AND NOT EXISTS(

SELECT 1
FROM e_pubmed_1000k l6
WHERE l6.link_type = 312 /* FundedByGrant */
AND l6.src_node_id = l4.dst_node_id
AND l6.dst_node_type = 185 /* grant */

);

time (seconds) rows

6840.0 (1.9 hours) 7630

Calculating paths through the query yields considerably better performance:

Document generated by Confluence on Jan 14, 2008 10:34 Page 23



CREATE TABLE query_half_grant AS
SELECT l1.src_node_id e1_src_node_id, l1.src_node_type e1_src_node_type, l1.link_id e1_link_id,
l1.link_type e1_link_type, l1.dst_node_id e1_dst_node_id, l1.dst_node_type e1_dst_node_type,

l3.src_node_id e3_src_node_id, l3.src_node_type e3_src_node_type, l3.link_id e3_link_id,
l3.link_type e3_link_type, l3.dst_node_id e3_dst_node_id, l3.dst_node_type e3_dst_node_type,

l5.src_node_id e5_src_node_id, l5.src_node_type e5_src_node_type, l5.link_id e5_link_id,
l5.link_type e5_link_type, l5.dst_node_id e5_dst_node_id, l5.dst_node_type e5_dst_node_type,
FROM e_pubmed_1000k l1, e_pubmed_1000k l3, e_pubmed_1000k l5
WHERE l1.src_node_type = 190 /* author */

AND l1.link_type = 313 /* IsAuthorOf */
AND l1.dst_node_type = 186 /* article */
AND l3.src_node_type = 190 /* author */
AND l3.link_type = 313 /* IsAuthorOf */
AND l1.dst_node_id = l3.dst_node_id
AND l1.src_node_id > l3.src_node_id
AND l5.src_node_type = 186 /* article */
AND l5.src_node_id = l3.dst_node_id
AND l5.dst_node_type = 185 /* grant */
;

CREATE TABLE query_half_no_grant AS
SELECT l2.src_node_id e2_src_node_id, l2.src_node_type e2_src_node_type, l2.link_id e2_link_id,
l2.link_type e2_link_type, l2.dst_node_id e2_dst_node_id, l2.dst_node_type e2_dst_node_type,

l4.src_node_id e4_src_node_id, l4.src_node_type e4_src_node_type, l4.link_id e4_link_id,
l4.link_type e4_link_type, l4.dst_node_id e4_dst_node_id, l4.dst_node_type e4_dst_node_type
FROM e_pubmed_1000k l2, e_pubmed_1000k l4
WHERE l2.src_node_type = 190 /* author */

AND l2.link_type = 313 /* IsAuthorOf */
AND l2.dst_node_type = 186 /* article */
AND l4.src_node_type = 190 /* author */
AND l4.link_type = 313 /* IsAuthorOf */
AND l2.dst_node_id = l4.dst_node_id
AND l2.src_node_id > l4.src_node_id
AND NOT EXISTS(

SELECT 1
FROM e_pubmed_1000k l6
WHERE l6.link_type = 312 /* FundedByGrant */
AND l6.src_node_id = l4.dst_node_id
AND l6.dst_node_type = 185 /* grant */

)
;

CREATE TABLE query_result AS
SELECT h1.e1_link_id, h1.e1_link_type, h1.e3_link_id, h1.e3_link_type, h1.e5_link_id,

Document generated by Confluence on Jan 14, 2008 10:34 Page 24



h1.e5_link_type,
h2.e2_link_id, h2.e2_link_type, h2.e4_link_id, h2.e4_link_type

FROM query_half_grant h1, query_half_no_grant h2
WHERE h1.e1_src_node_id = h2.e2_src_node_id

AND h1.e3_src_node_id = h2.e4_src_node_id
AND h1.e1_src_node_id > h2.e4_src_node_id
AND h1.e3_dst_node_id > h2.e4_dst_node_id
;

time (seconds) rows

part 1 (query_half_grant) 162.0 548855

part 2 (query_half_no_grant) 78.0 7085770

join 42 7630

total 282.0 (4.7 minutes)

Acknowledgments

Justin Levandoski did some of the early foundation work on translating pattern queries into single SQL
statements and benchmarking these queries on multiple databases.

References

1. SQL 1999: Understanding Relational Language Components by Jim Melton and Alan R. Simon,
Morgan Kaufmann, 2002

2. A visual language for querying and updating graphs by H. Blau, N. Immerman and D. Jensen, 2002,
University of Massachusetts Amherst Computer Science Technical Report 2002-037

3. Proximity 4.2 QGraph Guide by David Jensen, 2006, University of Massachusetts Amherst
4. The Graph Query Language, David Silberberg, July 18, 2006, from a presentation at the Lawrence

Livermore National Laboratory
5. A Semantic Graph Query Language by Kaplan, I.L., October 16, 2006, Lawrence Livermore National

Laboratory Technical Report UCRL-TR-225447
6. An Algorithm for Subgraph Isomorphism by Ullman, J, Journal of the ACM, January 1976 (Volume

23, Issue 1, Pgs 31 - 42)

Document generated by Confluence on Jan 14, 2008 10:34 Page 25


